15

- a plurality of III-nitride layers on the semiconductor substrate to provide an HEM structure; and
- an internal conductor structure extending from proximate to a major surface of the HEM structure to the semi-conductor substrate providing a vertical current path from the semiconductor substrate to the HEM structure, wherein the internal conductor structure comprises:
 - a dielectric liner along a trench sidewall, the dielectric liner having an opening proximate to a bottom surface of the trench;
 - a trench filling comprising a conductive layer, wherein the trench filling makes contact to the semiconductor substrate and to a 2DEG region of the HEM device; and
 - a first current carrying contact adjoining a back surface of the semiconductor substrate and in electrical communication with the trench filling.
- 2. The semiconductor device of claim 1 further comprising an epitaxial layer between the semiconductor substrate and the plurality of III-nitride layers, wherein the epitaxial layer is of the first conductivity type and has a lower dopant concentration than the semiconductor substrate.
- 3. The semiconductor device of claim 1, wherein the 25 plurality of III-nitride layers includes a GaN channel layer and an AlGaN barrier layer on the GaN channel layer to provide the 2DEG region, and wherein the semiconductor device further comprises:
 - a second current carrying electrode in the AlGaN barrier 30 layer; and
 - a gate structure overlying a portion of the AlGaN barrier layer and spaced apart from the second current carrying electrode, and wherein the internal connector structure forms a low resistance electrical current path from the 35 semiconductor substrate to the AlGaN barrier layer.
 - **4**. A cascode semiconductor structure comprising:
 - a depletion mode HEMT device comprising:
 - a base substrate of a first semiconductor material, wherein the base substrate forms a first current 40 carrying electrode;
 - a heterostructure comprising a III-nitride channel layer over the base substrate and a III-nitride barrier layer over the channel layer;
 - a second current carrying electrode coupled to the 45 barrier layer;
 - a first gate electrode overlying a portion of the barrier layer and spaced apart from the second current carrying electrode; and
 - a first internal conductor structure extending from the 50 barrier layer through the channel layer to the base substrate, wherein the first internal conductor structure forms a low resistance electrical current path from the base substrate to the barrier layer; and
 - a MOSFET device comprising:
 - a second gate electrode;
 - a third current carrying electrode electrically coupled to the first gate electrode; and
 - fourth current carrying electrode electrically coupled to the first internal conductor structure.
- 5. The structure of claim 4, wherein the first internal conductor structure comprises:
 - a first conductor within the barrier layer;
 - a second conductor extending from the first conductor to the base substrate; and
 - an insulator between the second conductor layer and the channel.

16

- 6. The structure of claim 5, wherein:
- the MOSFET device comprises a separate device stacked onto the depletion mode HEMT device; and
- the MOSFET device comprises a silicon substrate having opposing first and second major surfaces.
- 7. The structure of claim 6, wherein:
- the second gate electrode and the third current carrying electrode are disposed adjacent the first major surface of the silicon substrate;
- the fourth current carrying electrode is disposed adjacent the second major surface of the silicon substrate; and the fourth current carrying electrode is attached to the first current carrying electrode.
- 8. The structure of claim 7 further comprising:
- a package substrate having a die pad and a plurality of leads, wherein:
- the second current carrying electrode is attached to the die pad;
- the first gate electrode is attached to a first lead;
- the second gate electrode is electrically coupled to a second lead; and
- the third current carrying electrode is electrically coupled to the first lead.
- 9. The structure of claim 8 further comprising:
- a third lead electrically coupled to the die pad; and
- an encapsulant enclosing the depletion mode HEMT device, the MOSFET device and at least portions of the first lead and at least portions of the second lead.
- 10. The structure of claim 6, wherein:
- the second gate electrode and the third current carrying electrode are disposed adjacent the first major surface of the silicon substrate;
- the fourth current carrying electrode is disposed adjacent the second major surface of the silicon substrate; and the fourth current carrying electrode is attached to the second current carrying electrode.
- 11. The structure of claim 10 further comprising:
- a package substrate having a die pad and a plurality of leads, wherein:
- the first current carrying electrode is attached to the die pad;
- the first gate electrode is electrically coupled to a first lead;
- the second gate electrode is electrically coupled to a second lead; and
- the third current carrying electrode is electrically coupled to the first lead.
- 12. The structure of claim 11 further comprising:
- a third lead electrically coupled to the die pad; and
- an encapsulant enclosing the depletion mode HEMT device, the MOSFET device and at least portions of the first lead and at least portions of the second lead.
- 13. The structure of claim 4, wherein the MOSFET device is disposed within the base substrate.
 - 14. A cascode semiconductor structure comprising:
 - a depletion mode HEMT device comprising:

60

- a base substrate of a first semiconductor material, wherein the base substrate forms a first current carrying electrode;
- a heterostructure comprising a III-nitride channel layer over the base substrate and a III-nitride barrier layer over the channel layer;
- a second current carrying electrode coupled to the barrier layer;
- a first gate electrode overlying a portion of the barrier layer and spaced apart from the second current carrying electrode; and